triple

j=jd,k=kdj=j'd,k=k'd

i=1adμ(d)j=1,ij,djbk=1,dkc1=i=1adμ(d)j=1,ijd[bd]k=1,ikd[cd]1=i=1adiμ(d)j=1,ij[bd]k=1,ik[cd]1\begin{aligned} &\sum_{i=1}^a\sum_d\mu(d)\sum_{j=1,i\perp j,d|j}^b\sum_{k=1,d|k}^c1\\ =&\sum_{i=1}^a\sum_d\mu(d)\sum_{j'=1,i\perp j'd}^{[\frac bd]}\sum_{k'=1,i\perp k'd}^{[\frac cd]}1\\ =&\sum_{i=1}^a\sum_{d\perp i}\mu(d)\sum_{j'=1,i\perp j'}^{[\frac bd]}\sum_{k'=1,i\perp k'}^{[\frac cd]}1\\ \end{aligned}

f(g,x)=i=1x[ig]f(g,x)=\sum\limits_{i=1}^x[i\perp g],也就是x\le xgg互质的数的个数

i=1adiμ(d)j=1,ij[bd]k=1,ik[cd]1=i=1adiμ(d)f(i,[bd])f(i,[cd])\begin{aligned} &\sum_{i=1}^a\sum_{d\perp i}\mu(d)\sum_{j'=1,i\perp j'}^{[\frac bd]}\sum_{k'=1,i\perp k'}^{[\frac cd]}1\\ =&\sum_{i=1}^a\sum_{d\perp i}\mu(d)f(i,[\frac bd])f(i,[\frac cd]) \end{aligned}

然后对质因子容斥?